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ActiveModels presents an online library of macromolecular structures with accompanying 
scripts detailing descriptions of structure-function relationships for the key proteins and 
nucleic acids mentioned in the book and listed below. The hyperlinked text controls the 
graphic display and presents a variety of perspectives and features. End-of-chapter prob-
lems written specifically to utilize this resource appear in most chapters.

abl Kinase
acetylcholinesterase (Recombinant Human)
acetyl-Coa Carboxylase (Carboxyltransferase Domain)
acrb Channel
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Cat allergen
Choline acetyltranferase
Chorismate Mutase
Complex 1 (electron transport)
Complex 2 (electron transport)
Concanavalin
C-Reactive Protein (human)
Cu,Zn Superoxide Dismutase (human)
Cyclin-Dependent Kinase-2 (human)
Cyclooxygenase

Cystic fibrosis transmembrane Conductance Regulator
Cytidine triphosphate Synthetase
Cytochrome b Reductase
Cytochrome c 

Cytochrome c oxidase (Bos taurus)
Cytochrome c oxidase (Rhodobacter sphaeroides)
D2 Domain of nSf
Dicer i
Di-Heme Cytochrome c
3,4-Dihydroxyphenylalanine Decarboxylase
Dna Polymerase h
Drra Guanine nucleotide exchange factor
Dual Specificity Phosphatase 6
e1 Helicase
e1 Ubiquitin-like Protein Complex
eGfR Kinase Domain
elastase
enolase
enoyl-Coa Hydratase
estrogen Receptor
farnesyl transferase
fatty acid transporter
ferritin (human) and bacterioferritin
ferritin H Chain (human)
ferrochelatase (human)
fibrin (human)
fKbP12-Rapamycin Complex
flavodoxin
fliG (flagellar Rotor Protein)
fructose-1-6-bisphosphatase
Gaba Receptor associated Protein
Galectin 1 (human)
Glucose-6-Phosphate Dehydrogenase
Glutamine Synthetase
Glycogen Phosphorylase
GMP Synthetase
Grb2 Growth factor bound Protein 2 Signal transduction adaptor
GRD19p
Groel-GroeS Complex
Hemoglobin S

aCtiVeMoDelS libRaRy of PRoteinS anD nUCleiC aCiDS
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Hepatocyte nuclear factor 1b bound to Dna
Hexokinase (human)
HiV-1 Protease
HiV Reverse transcriptase with a Rival Purine inhibitor
HiV Reverse transcriptase with inhibitor 7
Hla a2 Class i MHC
HMG-Coa Reductase
Hsp90
influenza Virus Hemagglutinin
interleukin 17 Receptor Complex
interleukin -4 and its Receptor
ire1 (transmembrane Serine/threonine Kinase)
isocitrate Dehydrogenase
itK-Sh2 Domain bound to Phosphopeptide
Kif1a (monomeric kinesin)-Microtubule Complex)
Kinesin
Kinesin (rat)
b-lactamase
lactate Dehydrogenase (Malarial)
lDl Receptor
lipocalin (human)
luciferase inhibitor Complex (firefly)
lysine Gingipain (Kgp) protein
Malonyl-Coa-aCP transferase

MDM2 (Ubiquitin-Protein ligase e3)
Metalloprotease
Methemoglobin (horse)
Monoamine oxidase b (human)
Myoglobin
Myosin 2 - heavy and light chain
Myosin 2 - heavy chain
Myosin 5
nc6.8 (monoclonal ab) fab in Complex With Sweetener 
   Sc45647
neuropsin (a Serine Protease)
nicotinic acetylcholine Receptor
niemann-Pick C1: Cholesterol
nitrogenase Reductase
n-Myristoyltransferase With bound Myristoyl-Coa
nSe/nS4a Protease apostructure (Hepatitis C Virus)
nuclear Receptor X Heterodimers
2,3-oxidosqualene Cyclase with lanosterol
p53-Dna Complex (p53 Dna-binding Domain)
Pepsin 1 DMSo
P-Glycoprotein (MDR)
Phosphofructokinase (Trypanosoma)
Phosphoglucoisomerase (Bacillus)
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Recombinant DNA Techniques

Restriction endonuclease digestion of Dna Section 10.6d
Restriction mapping Section 10.6e–f
nucleotide sequencing Section 11.1
nucleic acid hybridization Section 11.3
Chemical synthesis of oligonucleotides Section 11.6
Cloning; recombinant Dna constructions Section 12.1
Construction of genomic Dna libraries Section 12.2
Combinatorial libraries of synthetic oligomers Section 12.2
Screening Dna libraries by colony hybridization Section 12.2b
mRna isolation Section 12.2e
Construction of cDna libraries Section 12.2e
expressed sequence tags Section 12.2e
Southern blotting Section 12.2e
Gene chips (Dna microarrays) Section 12.2f
Protein expression from cDna inserts Section 12.3
Screening protein expression libraries with antibodies Section 12.3a
two-hybrid systems to identify protein:protein interactions Section 12.3c
Reporter gene constructs Section 12.3b
Polymerase chain reaction (PCR) Section 11.1b
Rt-qPCR (real-time quantitative PCR) Section 12.3a
in vitro mutagenesis Section 12.3d
ChiP-Seq (chromatin immunoprecipitation-Dna sequencing)  
Section 12.3c
Rnai Section 12.4
Dna laser printing Section 12.5b
biobricks Section 12.7b
CRiSPR/Cas9 Section 12.7e

Probing the Function of Biomolecules

Green fluorescent protein Section 4.3
Plotting enzyme kinetic data Section 13.3j
enzyme inhibition Section 13.4
optical trapping to measure molecular forces Section 16.2c
isotopic tracers as molecular probes Section 17.4b
Rnai Section 12.4
nMR spectroscopy Section 17.4c
transgenic animals Section 28.8
Dna footprinting Section 28.1

Techniques Relevant to Clinical Biochemistry

Gene therapy Section 12.6a
Metabolomic analysis Section 17.5

fluxomics Section 17.5
tumor diagnosis with positron emission tomography (Pet)  
Section 18.7
Glucose monitoring devices Section 22.1
fluoro-substituted analogs as therapeutic agents Section 26.8
“Knockout” mice Section 28.7

Isolation/Purification of  Macromolecules

ion exchange chromatography Section 5.2
Protein purification protocols Section 5.2
Dialysis and ultrafiltration Section 5.2
Size exclusion chromatography Section 5.2
SDS-polyacrylamide gel electrophoresis Section 5.2
isoelectric focusing Section 5.2
two-dimensional gel electrophoresis Section 5.2
Hydrophobic interaction chromatography Section 5.2
High-performance liquid chromatography Section 5.2
affinity chromatography Section 5.2
Ultracentrifugation Section 5.2
fractionation of cell extracts by centrifugation Section 5.2
Proteomic analysis by MudPit (Multidimensional Protein  
identification technology) Section 5.9b

Analyzing the Physical and Chemical Properties  
of Biomolecules 

titration of weak acids Section 2.2a
Preparation of buffers Section 2.3
Measurement of standard reduction potentials Section 3.9
edman degradation Section 4.3
nuclear magnetic resonance (nMR) Section 4.5
estimation of protein concentration Section 5.2
amino acid analysis of proteins Section 4.6
amino acid sequence determination Section 5.4
Mass spectrometry of proteins Section 5.4i
Peptide mass fingerprinting Section 5.4i
Solid-phase peptide synthesis Section 5.6
Membrane lipid phase transitions Section 9.4b
Dna nanotechnology Section 10.5a
nucleic acid hydrolysis Section 10.6
Dna sequencing Section 11.1
Single-molecule Dna sequencing Section 11.1
Density gradient (isopycnic) centrifugation Section 11.3

All of our knowledge of biochemistry is the outcome of experiments. For the most part, 
this text presents biochemical knowledge as established fact, but students should never lose 
sight of the obligatory connection between scientific knowledge and its validation by obser-
vation and analysis. The path of discovery by experimental research is often indirect, tortu-
ous, and confounding before the truth is realized. Laboratory techniques lie at the heart of 
scientific inquiry, and many techniques of biochemistry are presented within these pages to 
foster a deeper understanding of the biochemical principles and concepts that they reveal.

laboRatoRy teCHniQUeS in bioCHeMiStRy
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the Sixth edition

Scientific understanding of the molecular nature of life is growing at an astounding rate. 
Significantly, society is the prime beneficiary of this increased understanding. Cures for 
diseases, better public health, remedies for environmental pollution, and the development 
of cheaper and safer natural products are just a few practical benefits of this knowledge. 

In addition, this expansion of information fuels, in the words of Thomas Jefferson, 
“the illimitable freedom of the human mind.” Scientists can use the tools of biochemistry 
and molecular biology to explore all aspects of an organism—from basic questions about 
its chemical composition, through inquiries into the complexities of its metabolism, its 
differentiation and development, to analysis of its evolution and even its behavior. New 
procedures based on the results of these explorations lie at the heart of the many modern 
medical miracles. Biochemistry is a science whose boundaries now encompass all aspects 
of biology, from molecules to cells, to organisms, to ecology, and to all aspects of health 
care. This sixth edition of Biochemistry embodies and reflects the expanse of this knowl-
edge. We hope that this new edition will encourage students to ask questions of their own 
and to push the boundaries of their curiosity about science. 

Making Connections

As the explication of natural phenomena rests more and more on biochemistry, its inclu-
sion in undergraduate and graduate curricula in biology, chemistry, and the health 
sciences becomes imperative. The challenge to authors and instructors is a formidable 
one: how to familiarize students with the essential features of modern biochemistry in an 
introductory course or textbook. Fortunately, the increased scope of knowledge allows 
scientists to make generalizations connecting the biochemical properties of living systems 
with the character of their constituent molecules. As a consequence, these generalizations, 
validated by repetitive examples, emerge in time as principles of biochemistry, principles 
that are useful in discerning and describing new relationships between diverse biomolecular 
functions and in predicting the mechanisms underlying newly discovered biomolecular 
processes. Nevertheless, it is increasingly apparent that students must develop skills in 
inquiry-based learning, so that, beyond this first encounter with biochemical principles 
and concepts, students are equipped to explore science on their own. Much of the design 
of this new edition is meant to foster the development of such skills.

We are both biochemists, but one of us is in a biology department, and the other is in 
a chemistry department. Undoubtedly, we each view biochemistry through the lens of 
our respective disciplines. We believe, however, that our collaboration on this textbook 
represents a melding of our perspectives that will provide new dimensions of apprecia-
tion and understanding for all students.

our audience

This biochemistry textbook is designed to communicate the fundamental principles  
governing the structure, function, and interactions of biological molecules to students 
encountering biochemistry for the first time. We aim to bring an appreciation of 

PRefaCe 
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biochemistry to a broad audience that includes undergraduates majoring in the life sci-
ences, physical sciences, or premedical programs, as well as medical students and graduate 
students in the various health sciences for whom biochemistry is an important route to 
understanding human physiology. To make this subject matter more relevant and inter-
esting to all readers, we emphasize, where appropriate, the biochemistry of humans. 

objectives and building on Previous editions 

We carry forward the clarity of  purpose found in previous editions; namely, to illuminate 
for students the principles governing the structure, function, and interactions of 
biological molecules. At the same time, this new edition has been revised to reflect 
tremendous developments in biochemistry. Significantly, emphasis is placed on the 
interrelationships of  ideas so that students can begin to appreciate the overarching 
questions of  biochemistry.

features
●● Clarity of Instruction This edition was re-organized for increased clarity and read-

ability. Many of the lengthier figure legends were shortened and more information 
was included directly within illustrations. These changes will help the more visual 
reader.

●● Visual Instruction The richness of the Protein Data Bank (www.pdb.org) and avail-
ability of molecular graphics software has been exploited to enliven this text. Over 
440 images of prominent proteins and nucleic acids involved with essential biological 
functions illustrate and inform the subject matter and were prepared especially for 
this book.

●● Essential Questions organization Each chapter in this book is framed around an 
Essential Question that invites students to become actively engaged in their learning 
and encourages curiosity and imagination about the subject matter. For example, the 
Essential Question of Chapter 3 asks, “What are the laws and principles of thermo-
dynamics that allow us to describe the flows and interchanges of heat, energy, and 
matter in biochemical systems?” The section heads then pose Key Questions that serve 
as organizing principles for a lecture such as, “What is the daily human requirement 
for ATP?” The subheadings are designed to be concept statements that respond to the 
section headings. The end-of-chapter Summary then brings each question together 
with a synopsis of the answer that summarizes the important concepts and facts to 
aid students in organizing and understanding the material.

●● Foundational Biochemistry At the end of each chapter, a new Foundational Biochem-
istry feature has been added. These sections provide a comprehensive list of the prin-
cipal facts and concepts that a student should understand after reading each chapter. 
Presented as short statements or descriptive phrases, the items of the Foundational 
Biochemistry list serve as guides to students of the knowledge they have acquired 
from the chapter and as checklists the students can review in assessing their learning.

●● End-of-Chapter Problems More than 600 end-of-chapter problems are provided. They 
serve as meaningful exercises that help students develop problem-solving skills useful 
in achieving their learning goals. Some problems require students to employ calcula-
tions to find mathematical answers to relevant structural or functional questions. 
Other questions address conceptual problems whose answers require application and 
integration of ideas and concepts introduced in the chapter. Each set of problems 
includes MCAT practice questions to aid students in their preparation for standard-
ized examinations such as the MCAT or GRE. 

●● End-of-chapter problem headings allow students to place the problem within the con-
text of the subject matter they have learned.

●● Further Readings sections at the end of each chapter make it easy for students to find 
up-to-date additional information about each topic.
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●● Critical Developments in Biochemistry essays emphasize recent and historical advances 
in the field.

●● Human Biochemistry essays emphasize the central role of basic biochemistry in medi-
cine and the health sciences. These essays often present clinically important issues 
such as diet, diabetes, and cardiovascular health.

●● A Deeper Look essays expand on the text, highlighting selected topics or experimental 
observations.

●● Laboratory Techniques The experimental nature of biochemistry is highlighted, and a 
list of laboratory techniques found in this book can be seen on page xxx.

Highlights of this edition
●● ActiveModels Library of Proteins and Nucleic Acids is an optional online resource 

(http://www.psafe.us) for exploration of over 1,000 protein and nucleic acid structures, 
particularly those described in this text. Each structure is presented as a “Molecular 
Document” using the ICM Browser Pro modeling program developed by Molsoft, 
LLC in La Jolla, CA. These molecular documents were created by undergraduate 
biochemistry students at the University of Virginia and illustrate macromolecular 
structures with rich, vivid, state-of-the-art graphics accompanied by a script that 
highlights pertinent structure-function correlations. Hyperlinks in the text window of 
each entry control the graphic display and present a variety of perspectives and fea-
tures for each protein or nucleic acid. A number of end-of-chapter problems challenge 
students to explore macromolecular structure and function through examination of 
these molecular documents.

Recent advances Highlighted in these Chapters

Chapter 1 The foundations of  biochemistry. New highlight: The 
eukaryotic cell likely emerged from an archaeal lineage. Contem-
porary eukaryotic cells are composites that harbor bacterial and 
archaeal contributions. A new Critical Developments in Bio-
chemistry feature on synthetic life: the chemical synthesis of  a 
bacterial genome and its incorporation into host cells to create 
the first organism with a fully synthetic genome.

Chapter 2 This chapter reviews the properties of water, the nature 
of hydrophobic interactions, ionic equilibria, the behavior of 
weak acids, the concept of pH, and the major buffer systems in 
organisms.

Chapter 3 This chapter features a simplified, more student- accessible 
presentation of the basic concepts of thermodynamics, highlighted 
by a new “A Deeper Look” box stressing the difference between 
free energy changes under cellular conditions,  standard-state free 
energy changes (G ), and the situation at equilibrium (G  0).

Chapter 4 The structure and chemistry of amino acids. An intro-
duction to the Brainbow technique that enables labeling of many 
individual neurons. New A Deeper Look box on the unusual 
amino acid selenocysteine and selenoproteins, and a new Critical 
Developments in Biochemistry box on incorporation of unnatural 
amino acids into proteins.

Chapter 5 Proteins as polymers of amino acids; proteins as mac-
romolecules of elaborate structure; proteins as the agents of bio-
logical function. A new section defining the concept of the 
proteome and what new insights emerge from such large-scale, 
global studies of all the proteins in a given cell or tissue. The pro-
teome is an excellent reflection of what a particular cell is doing at 
a specific moment in time.

Chapter 6 The higher-order structure of proteins. A Deeper Look 
feature on protein sectors—evolutionary units of three-dimensional 
structure, and a new Deeper Look feature on metamorphic proteins, 
which exist as an ensemble of structures of similar energies and 
stabilities. A new “Human Biochemistry” box on chimeric antigen 
receptor (CAR) T-cell therapies as the basis of novel cancer treat-
ments, and a new “A Deeper Look” box on friction in the protein 
folding process, as well as expanded coverage of intrinsically dis-
ordered proteins.

Chapter 7 The structure and chemistry of carbohydrates. The dis-
covery that the dis accharide galactose-α-1,3-galactose (“alpha 
gal”) triggers red meat allergy. A new “A Deeper Look” box on the 
chemistry of cellulose crosslinks in wrinkle-free fabrics, and a new 
“A Deeper Look” box on the role of N-linked oligosaccharides in 
protein folding.

Chapter 8 The structure and chemistry of lipids. A new Deeper 
Look feature on glycophospholipids that play a role in formation 
of plasma membrane signaling microdomains involved in cellular 
differentiation and maturation. Also a new Human Biochemistry 
feature on the endocannabinoid signaling system that involves lipid- 
soluble signals such as anandamide and 2- arachidonoylglycerol. The 
signaling effects of sphingosine-1-phosphate.

Chapter 9 Membrane structure and function. A new Human 
 Biochemistry feature on development of inhibitors of 
N- myristoyltransferase in T. brucei, the organism that causes 
sleeping sickness in Africa. Also revised discussions of the roles of 
sphingolipid and cholesterol in the formation of membrane rafts 
and the structures and functions of SNARE proteins and channel 
proteins. Five new end-of-chapter problems based on recent 
research on membrane proteins and transport sytems.
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Chapter 10 The structure and chemistry of nucleotides and nucleic 
acids. New appreciation of cyclic dinucleotides as signaling mole-
cules, including the role of cGAMP in triggering a program of gene 
expression aimed at halting infection. An updated introduction to 
the many roles of small RNAs in the regulation of gene expression: 
miRNAs and the long, noncoding RNAs (lincRNAs). 

Chapter 11 The structure of nucleic acids and chromosomes. An 
overview of the next-generation DNA sequencing technologies, 
including emerging technologies to sequence single molecules of 
DNA. The techniques at the forefront of “personal genomics”: the 
ability to carry out low-cost sequencing of an individual’s genome 
and the implications of the information obtained on the diagnosis 
and treatment of disease. Also, creation of DNA molecules com-
posed of not just two, but three, different base pairs opens up 
extraordinary potentials within synthetic biology. New structural 
models for chromatin at the level of its 30-nm fiber ‘secondary 
structure’ give insights into the long mysterious higher-order struc-
ture of chromosomes. A discussion of how new biological roles of 
RNA have come into sharper focus because of recent realizations 
that their three-dimensional architectures are conformationally 
dynamic, endowing these RNAs with functional abilities, such as 
ligand binding and even catalysis.

Chapter 12 The strategies of recombinant DNA technology and 
gene cloning. New features include a section devoted to high-
throughput technologies that allow global study of millions of 
genes or proteins in a single experiment and a section devoted to 
the emerging field of synthetic biology, with special emphasis on 
the use of CRISPR/Cas9 to edit genes and genomes.

Chapter 13 The equations of enzyme kinetics. A new perspective on 
the response of enzyme reaction rate to increasing temperature is 
presented, wherein a temperature-dependent equilibrium between 
active enzyme and a catalytically inactive but not denatured state 
of the enzyme affords a deeper understanding of enzyme kinetics. 
Ribozymes, abzymes, and designer enzymes are featured here.

Chapter 14 Mechanisms of enzyme action. A new section on the 
role of quantum mechanical tunneling in electron and proton 
transfer reactions of enzymes. New Human Biochemistry box on 
antibiotic resistance by (carbapenem-resistant) superbugs. New 
Critical Developments in Biochemistry box on acceleration of 
enzyme reactions by electric fields.

Chapter 15 Enzyme regulation. This chapter highlights allosteric 
regulation and covalent modification of enzymes as important 
modes of metabolic regulation and includes discussion of revers-
ible acetylation, a newly appreciated means to regulate metabolic 
enzymes. The relationship between quaternary structure and allo-
steric regulation is exemplified by a comparison of the oxygen-
binding proteins myoglobin and hemoglobin.

Chapter 16 Motor proteins. A revised discussion of P-loop 
NTPases and their role in molecular motors and a revised sec-
tion on the contraction cycle of skeletal muscle. New Human  
Biochemistry box on the “tubulin code” post-translational modi-
fications that coordinate the functions of microtubules.

Chapter 17 An overview of metabolism, to prepare students for 
the ten chapters on metabolic pathways which follow. This edition 
highlights metabolomics, the study of all the metabolites in a cell 

at a particular moment, as the most accurate representation of 
what a cell is doing at any instant. 

Chapter 18 Glycolysis. A Critical Developments in Biochemistry 
feature that describes a modern interpretation of the Warburg 
effect in cancer. Expanded coverage of glucokinase and its role as 
a glucose sensor that recognizes glucose and initiates a signaling 
pathway that results in glucose-induced insulin secretion. New 
information on protein kinase M2 (PK M2), including its newly-
discovered protein kinase activity, its stimulation by SAICAR (an 
intermediate in the purine biosynthetic pathway), and its role in 
tumor proliferation. New coverage of the unregulated metabolism 
of dietary fructose in the liver, and its implications for insulin resis-
tance, metabolic syndrome, and obesity.

Chapter 19 The citric acid cycle. A new discussion of the structure  
of pyruvate dehydrogenase comple; a new Deeper Look feature on 
the role of anaplerosis in insulin secretion; and a section on the regu-
lation of TCA cycle enzymes by acetylation. A new Human 
 Biochemistry box on the roles of citric acid cycle metabolites in post-
translational modification of proteins, including acetylation, succi-
nylation, and succination reactions. New information on the operation 
of the eight citric cycle enzymes as a supercomplex or metabolon.

Chapter 20 Electron transport and oxidative phosphorylation. 
Discussion of the new structure of Complex I and new informa-
tion on supercomplexes in electron transport. New insights into 
the mechanism of  action of  the F1F0-ATP synthase. A new 
Human Biochemistry box describing mitochondrial dynamics and 
its role in car   dio    vascular, neurodegenerative, and endocrine dis-
eases, as well as cancer. A new Human Biochemistry box on car-
diolipin and its stabilization of respiratory supercomplexes, the 
biogenesis of mitochondrial proteins, and the fission and fusion 
processes of mitochondria.

Chapter 21 Photosynthesis—the most fundamental of  all energy 
transduction systems in nature: the biochemistry of  photosyn-
thesis; the transformation of  light energy into chemical energy. 
New information on species variability in the c-subunit stoichi-
ometry of  CF1CF0-ATP synthases and the implications of  this 
variability for the energetic cost of  ATP formation. The recently 
described structure of  the Mn4CaO5 oxygen-evolving cluster at 
the heart of  Photosystem II is presented. Emphasis on the path-
way of  carbon dioxide fixation that synthesizes organic molecules 
from CO2, ultimately leading to cellulose and starch formation, 
the two significant polysaccharides produced by plants.

Chapter 22 Gluconeogenesis, glycogen metabolism, and the pen-
tose phosphate pathway. A Deeper Look feature on TIGAR, a 
p53-induced enzyme that mimics fructose-2,6-bisphosphatase and 
responds to cellular stresses such as oncogenesis and DNA dam-
age events; new information on O-GlcNAc signaling and the 
hexosamine biosynthetic pathway; and a new Critical Develop-
ments in Biochemistry feature describing how consumption of 
ATP promotes and supports the metabolism of cancer cells. The 
interplay of phosphorylation and O-GlcNAcylation in gluconeo-
genic gene transcription, particularly in the fasting state.

Chapter 23 Fatty acid oxidation. A new Deeper Look feature on 
the biochemistry of obesity describing the role of peroxisome 
proliferator-activated receptors in regulation of gene expression in 
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fatty acid oxidation and triglyceride metabolism. A new A Deeper 
Look box describing the trifunctional enzyme complex at the heart 
of the β-oxidation pathway and migration of its fatty acyl sub-
strates along a negatively-charged substrate channel without diffus-
ing into the bulk solvent. The role of β-hydroxybutyrate as a 
signaling metabolite that regulates gene expression, lipid metabo-
lism, metabolic rate, and resistance to oxidative stress.

Chapter 24 Lipid biosynthesis. A Human Biochemistry box fea-
turing the role of NPC1 and NPC2 proteins in cholesterol trans-
port in lysosomes and Niemann-Pick type C disease. Four new 
Human Biochemistry boxes: Lipins—phosphatases essential for 
triglyceride synthesis and other functions; Lipoxins—anti- 
inflammatory eicosanoid products of transcellular metabolism; 
APOC3—an apolipoprotein that regulates plasma triglyceride 
levels; and new cholesterol-lowering drugs that target PCSK9, an 
LDL receptor chaperone.

Chapter 25 The assimilation of inorganic nitrogen into organic nitro-
gen metabolites and biosynthesis of the amino acids. Discussion of 
glutamine and its metabolic significance as the most abundant amino 
acid in human body fluids and tissues; glutamine and cancer. Fur-
ther, tryptophan catabolism by the kynurenine pathway is presented, 
because this pathway has been implicated in human neurodegenera-
tive disorders such as Parkinson’s and Alzheimer’s disease.

Chapter 26 Biosynthesis of purines and pyrimidines. Tetrahydrofo-
late and 1-carbon metabolism. Purinosomes as multi-enzyme assem-
blages of the purine biosynthetic enzymes. The purine pathway 
intermediate SAICAR as a key signal in reprogramming metabolism 
in cancer cells. The structure of human ribonucleotide reductase with 
its revelations regarding regulation by nucleotides are presented.

Chapter 27 Summing up metabolism and the metabolic roles of the 
various organs. AMP-kinase (AMPK) as the cell’s energy charge 
sensor and the newly appreciated protection of AMPK by ADP are 
discussed. mTORC1 as the integrator of information about nutri-
ent status and as the regulator of cellular synthesis is introduced. 
The regulation of eating behavior. The relationships between nutri-
ent intake, AMPK, SIRT1 and protein acetylation and the conse-
quences that these relationships have for caloric intake control and 
the development of metabolic syndrome. These interactions illumi-
nate the underlying causes of the current obesity epidemic.

Chapter 28 DNA metabolism. The multiplicity of  DNA poly-
merases. A new section to integrate DNA replication, recom-
bination, and repair as interdependent aspects of  DNA 
metabolism introduces this chapter. Another new feature is  
an illustration of  how homologous recombination helps to pre-
vent cancer. Genetic recombination, protein diversity, and 
immunology.

Chapter 29 Transcription; DNA-dependent RNA polymerases. 
Transcription regulation in bacteria and in eukaryotes, An 
update of  eukaryotic translation initiation events in eukaryotes 
and the emerging science of  miRNAs and lncRNAs as key 
regulators of  post-transcriptional gene expression are presented, 
along with new structural and functional information about 
Mediator and its role as a bridge between enhancers of  tran-
scription and RNA polymerase II. The competing concepts of 
the histone code and histone crosstalk are discussed. The 
spliceosome. 

Chapter 30 Protein synthesis. The genetic code. Aminoacyl-tRNA 
synthetases and the second genetic code. New features of the 
G-protein family members, Ef-Tu and EF-G, and their interac-
tions with the ribosome, new structures for the ribosome RF-2 
termination complex, and the more richly detailed appreciation of 
the events in eukaryotic translation initiation highlight this chap-
ter. The ribosome as a ribozyme. Tethered ribosomes and new 
frontiers in synthetic biology. 

Chapter 31 Completing the protein life cycle. Modes of post-
transcriptional modification that control the functional protein 
pool, Protein folding and neurodegenerative protein folding dis-
eases. A new Human Biochemistry box on chaperones that func-
tion by stress-induced protein unfolding. A Human Biochemistry 
highlight on autophagy, the process by which cells recycle their 
materials. Expanded coverage of Htr proteins.

Chapter 32 Cell signaling and neurotransmission. Intracellular 
responses to extracellular signals. Protein kinase cascades. Orga-
nization and integration of  signaling pathways. Sensory systems. 
A Human Biochemistry feature on neurexins and neuroligins, 
which function as scaffolding proteins in the formation of  syn-
apses and the regulation of  synaptic transmission, learning, and 
memory.

Supporting Materials

for the instructor

Please visit http://www.cengage.com/chemistry/garrett/biochem6e for more information 
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about student resources for this text.
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Molecules are lifeless. Yet, in appropriate complexity and number, molecules com-
pose living things. These living systems are distinct from the inanimate world 

because they have certain extraordinary properties. They can grow, move, perform the 
incredible chemistry of metabolism, respond to stimuli from the environment, and, 
most significantly, replicate themselves with exceptional fidelity. The complex struc-
ture and behavior of living organisms veil the basic truth that their molecular constitu-
tion can be described and understood. The chemistry of the living cell resembles the 
chemistry of organic reactions. Indeed, cellular constituents, or biomolecules, must 
conform to the chemical and physical principles that govern all matter. Despite the 
spectacular diversity of life, the intricacy of biological structures, and the complexity 
of vital mechanisms, life functions are ultimately interpretable in chemical terms. 
Chemistry is the logic of biological phenomena. Living organisms are self-sustaining sys-
tems of chemical reactions.

1.1 What Are the Distinctive Properties 
of Living Systems?

First, the most obvious quality of living organisms is that they are complicated and highly 
organized (Figure 1.1). For example, organisms large enough to be seen with the naked 
eye are composed of many cells, typically of many types. In turn, these cells possess 
subcellular structures, called organelles, which are complex assemblies of very large 

1The Facts of Life: 
Chemistry Is the Logic 
of Biological Phenomena

KEY QUESTIONS

1.1 What Are the Distinctive Properties 
of Living Systems?

1.2 What Kinds of Molecules Are 
Biomolecules?

1.3 What Is the Structural Organization 
of Complex Biomolecules?

1.4 How Do the Properties of 
Biomolecules Reflect Their Fitness to 
the Living Condition?

1.5 What Are the Organization and 
Structure of Cells?

1.6 What Are Viruses?

“…everything that living things do can be 
understood in terms of  the jigglings and  
wigglings of  atoms.”

Richard P. Feynman. Lectures on Physics, 
Addison-Wesley, 1963

ESSENTIAL QUESTION
Molecules are lifeless. Yet, the properties of living things derive from the properties of 
molecules. Despite the spectacular diversity of life, the elaborate structure of biological 
molecules, and the complexity of vital mechanisms, are life functions ultimately 
interpretable in chemical terms?
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2 Chapter 1 The Facts of Life: Chemistry Is the Logic of Biological Phenomena

polymeric molecules, called macromolecules. These macromolecules themselves show 
an exquisite degree of organization in their intricate three-dimensional architecture, 
even though they are composed of simple sets of chemical building blocks, such as 
sugars and amino acids. Indeed, the complex three-dimensional structure of a macro-
molecule, known as its conformation, is a consequence of interactions between the 
monomeric units, according to their individual chemical properties.

Second, biological structures serve functional purposes. That is, biological structures 
play a role in the organism’s existence. From parts of organisms, such as limbs and 
organs, down to the chemical agents of metabolism, such as enzymes and metabolic 
intermediates, a biological purpose can be given for each component. Indeed, it is this 
functional characteristic of biological structures that separates the science of biology 
from studies of the inanimate world such as chemistry, physics, and geology. In biology, 
it is always meaningful to seek the purpose of observed structures, organizations, or 
patterns; that is, to ask what functional role they serve within the organism. 

Third, living systems are actively engaged in energy transformations. Maintenance of 
the highly organized structure and activity of living systems depends on their ability to 
extract energy from the environment. The ultimate source of energy is the sun. Solar 
energy flows from photosynthetic organisms (organisms able to capture light energy by 
the process of photosynthesis) through food chains to herbivores and ultimately to car-
nivorous predators at the apex of the food pyramid (Figure 1.2). The biosphere is thus 
a system through which energy flows. Organisms capture some of this energy, be it from 
photosynthesis or the metabolism of food, by forming special energized biomolecules, 
of which ATP and NADPH are the two most prominent examples (Figure 1.3). (Com-
monly used abbreviations such as ATP and NADPH are defined on the inside back 
cover of this book.) ATP and NADPH are energized biomolecules because they repre-
sent chemically useful forms of stored energy. We explore the chemical basis of this 
stored energy in subsequent chapters. For now, suffice it to say that when these mole-
cules react with other molecules in the cell, the energy released can be used to drive en-
ergetically unfavorable processes. That is, ATP, NADPH, and related compounds are 
the power sources that drive the energy-requiring activities of the cell, including biosyn-
thesis, movement, osmotic work against concentration gradients, and, in special in-
stances, light emission (bioluminescence). Only upon death does an organism reach 
equilibrium with its inanimate environment. The living state is characterized by the flow 
of energy through the organism. At the expense of this energy flow, the organism can 
maintain its intricate order and activity far removed from equilibrium with its surround-
ings, yet exist in a state of apparent constancy over time. This state of apparent con-
stancy, or so-called steady state, is actually a very dynamic condition: Energy and  

FIgure 1.1  (a) Gelada (Theropithecus gelada), a baboon native to the Ethiopian highlands.  
(b) Tropical orchid (Masdevallia norops), Ecuador.
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 1.1 What Are the Distinctive Properties of Living Systems? 3

material are consumed by the organism and used to maintain its stability and order. In 
contrast, inanimate matter, as exemplified by the universe in totality, is moving to a 
condition of increasing disorder or, in thermodynamic terms, maximum entropy c.

Fourth, living systems have a remarkable capacity for self-replication. Generation after 
generation, organisms reproduce virtually identical copies of themselves. This self- 
replication can proceed by a variety of mechanisms, ranging from simple division in bacte-
ria to sexual reproduction in plants and animals; but in every case, it is characterized by an 
astounding degree of fidelity (Figure 1.4). Indeed, if the accuracy of self-replication were 
significantly greater, the evolution of organisms would be hampered. This is so because 
evolution depends upon natural selection operating on individual organisms that vary 
slightly in their fitness for the environment. The fidelity of self-replication resides ultimately 
in the chemical nature of the genetic material. This substance consists of polymeric chains 
of deoxyribonucleic acid, or DNA, which are structurally complementary to one another 
(Figure 1.5). These molecules can generate new copies of themselves in a rigorously  

entropy c A thermodynamic term used to designate 
that amount of energy in a system that is unavailable 
to do work.

hν
Carnivores

2° Consumers

1° Consumers

1° Producers

Carnivore product (0.4 g)

Herbivore product (6 g)

Primary productivity (270 g)

Herbivores

Photosynthesis

Productivity per square meter of a Tennessee �eld

FIgure 1.2  The food pyramid. Photosynthetic organisms at the base capture light energy. Herbivores 
and carnivores derive their energy ultimately from these primary producers.
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4 Chapter 1 The Facts of Life: Chemistry Is the Logic of Biological Phenomena

executed polymerization process that ensures a faithful reproduction of the original DNA 
strands. In contrast, the molecules of the inanimate world lack this capacity to replicate. A 
crude mechanism of replication must have existed at life’s origin.

1.2 What Kinds of Molecules Are Biomolecules?

The elemental composition of living matter differs markedly from the relative abun-
dance of elements in the earth’s crust (Table 1.1). Hydrogen, oxygen, carbon, and nitro-
gen constitute more than 99% of the atoms in the human body, with most of the H and 
O occurring as H2O. Oxygen, silicon, aluminum, and iron are the most abundant atoms 
in the earth’s crust, with hydrogen, carbon, and nitrogen being relatively rare (less than 

FIgure 1.4  Organisms resemble their parents. (a) The Garrett 
lineage. Top-to-bottom, left-to-right: Reg Garrett; sons Jeffrey, 
Randal, and Robert; grandchildren Jackson, Bella, Reggie, and 
Ricky. (b) Orangutan with infant. (c) The Grisham family. Top-
to-bottom, left-to-right: Charles and Rosemary; son David, 
daughter Emily with granddaughters Annie and May, son 
Andrew.
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FIgure 1.5  The DNA double helix. Two complementary polynucleotide chains running in opposite 
directions can pair through hydrogen bonding between their nitrogenous bases. Their complementary 
nucleotide sequences give rise to structural complementarity.
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 1.2 What Kinds of Molecules Are Biomolecules? 5

0.2% each). Nitrogen as dinitrogen (N2) is the predominant gas in the atmosphere, and 
carbon dioxide (CO2) is present at a level of 0.04%, a small but critical amount. Oxygen 
is also abundant in the atmosphere and in the oceans. What property unites H, O, C, 
and N and renders these atoms so suitable to the chemistry of life? It is their ability to 
form covalent bonds by electron-pair sharing. Furthermore, H, C, N, and O are among 
the lightest elements of the periodic table capable of forming such bonds (Figure 1.6). 
Because the strength of covalent bonds is inversely proportional to the atomic weights 
of the atoms involved, H, C, N, and O form the strongest covalent bonds. Two other 
covalent bond-forming elements, phosphorus (as phosphate [OOPO3

22] derivatives) 
and sulfur, also play important roles in biomolecules.

1.2a Biomolecules Are Carbon Compounds
All biomolecules contain carbon (C). The prevalence of C is due to its unparalleled 
versatility in forming stable covalent bonds through electron-pair sharing. Carbon 
can form as many as four such bonds by sharing each of the four electrons in its outer 
shell with electrons contributed by other atoms. Atoms commonly found in covalent 
linkage to C are C itself, H, O, and N. Hydrogen can form one such bond by contrib-
uting its single electron to the formation of an electron pair. Oxygen, with two 
unpaired electrons in its outer shell, can participate in two covalent bonds, and 
nitrogen, which has three unshared electrons, can form three such covalent bonds. 
Furthermore, C, N, and O can share two electron pairs to form double bonds with one 
another within biomolecules, a property that enhances their chemical versatility. 
Carbon and nitrogen can even share three electron pairs to form triple bonds.

Two properties of carbon covalent bonds merit particular attention. One is the abil-
ity of carbon to form covalent bonds with itself. The other is the tetrahedral nature of 
the four covalent bonds when carbon atoms form only single bonds. Together these 
properties hold the potential for an incredible variety of linear, branched, and cyclic 
compounds of C. This diversity is multiplied further by the possibilities for including N, 
O, and H atoms in these compounds (Figure 1.7). We can therefore envision the ability 
of C to generate complex structures in three dimensions. These structures, by virtue of 
appropriately included N, O, and H atoms, can display unique chemistries suitable to 
the living state. Thus, we may ask, is there any pattern or underlying organization that 
brings order to this astounding potentiality?

Composition of the Earth’s Crust, Seawater, and the Human Body*
Earth’s Crust Seawater Human Body†

Element % Compound mM Element %

O 47 Cl2 548 H 63

Si 28 Na1 470 O 25.5

Al   7.9 Mg21   54 C   9.5

Fe   4.5 SO4
22   28 N   1.4

Ca   3.5 Ca21   10 Ca   0.31

Na   2.5 K1   10 P   0.22

K   2.5 HCO3
2  2.3 Cl   0.08

Mg   2.2 NO3
2  0.01 K   0.06

Ti   0.46 HPO4
22   ,0.001 S   0.05

H   0.22 Na   0.03

C   0.19 Mg   0.01

*Figures for the earth’s crust and the human body are presented as percentages of the total number of atoms; 
seawater data are in millimoles per liter. Figures for the earth’s crust do not include water, whereas figures for the 
human body do.
†Trace elements found in the human body serving essential biological functions include Mn, Fe, Co, Cu, Zn, Mo, I, Ni, 
and Se.
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FIgure 1.6  Covalent bond formation by e2  pair 
sharing. 
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FIgure 1.7  Examples of the versatility of COC bonds in building complex structures: linear, cyclic, 
branched, and planar.
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 1.3 What Is the Structural Organization of Complex Biomolecules? 7

1.3 What Is the Structural Organization of Complex 
Biomolecules?

Examination of the chemical composition of cells reveals a dazzling variety of or-
ganic compounds covering a wide range of molecular dimensions (Table 1.2). As this 
complexity is sorted out and biomolecules are classified according to the similarities 
of their sizes and chemical properties, an organizational pattern emerges. The bio-
molecules are built according to a structural hierarchy: Simple molecules are the 
units for building complex structures.

The molecular constituents of living matter do not reflect randomly the infinite pos-
sibilities for combining C, H, O, and N atoms. Instead, only a limited set of the many 
possibilities is found, and these collections share certain properties essential to the es-
tablishment and maintenance of the living state. The most prominent aspect of biomo-
lecular organization is that macromolecular structures are constructed from simple 
molecules according to a hierarchy of increasing structural complexity. What properties 
do these biomolecules possess that make them so appropriate for the condition of life?

1.3a  Metabolites Are used to Form the Building Blocks  
of Macromolecules 

The major precursors for the formation of biomolecules are water, carbon dioxide, and 
three inorganic nitrogen compounds—ammonium (NH4

1), nitrate (NO3
2), and dini-

trogen (N2). Metabolic processes assimilate and transform these inorganic precursors 
through ever more complex levels of biomolecular order (Figure 1.8). In the first step, 

Biomolecular Dimensions

The dimensions of mass* and length for biomolecules are given typically in daltons and nanometers,† respectively. One dalton (D) is approximately 
equal to the mass of one hydrogen atom, 1.66  3  10224 g. One nanometer (nm) is 1029 m, or 10 Å (angstroms).

Mass

 
Biomolecule

Length  
(long dimension, nm) Daltons Picograms

Water 0.3 18  

Alanine 0.5 89

Glucose 0.7 180  

Phospholipid 3.5 750  

Ribonuclease (a small protein) 4 12,600  

Immunoglobulin G (IgG) 14 150,000  

Myosin (a large muscle protein) 160  470,000  

Ribosome (bacteria) 18 2,520,000  

Bacteriophage fX174 (a very small bacterial virus) 25 4,700,000  

Pyruvate dehydrogenase complex (a multienzyme complex) 60 7,000,000  

Tobacco mosaic virus (a plant virus) 300 40,000,000 6.68  3  1025

Mitochondrion (liver) 1,500  1.5

Escherichia coli cell 2,000  2

Chloroplast (spinach leaf) 8,000  60

Liver cell 20,000  8,000

*Molecular mass is expressed in units of daltons (D) or kilodaltons (kD) in this book; alternatively, the dimensionless term molecular weight, symbolized by Mr, and defined as the ratio 
of the mass of a molecule to 1 dalton of mass, is used.
†Prefixes used for powers of 10 are
106 mega M 1023 milli m
103 kilo k 1026 micro m
1021 deci d 1029 nano n
1022 centi c 10212 pico p
   10215 femto f

TABLE 1.2
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8 Chapter 1 The Facts of Life: Chemistry Is the Logic of Biological Phenomena

precursors are converted to metabolites, simple organic compounds that are intermedi-
ates in cellular energy transformation and in the biosynthesis of various sets of building 
blocks: amino acids, sugars, nucleotides, fatty acids, and glycerol. Through covalent 
linkage of these building blocks, the macromolecules are constructed: proteins, poly-
saccharides, polynucleotides (DNA and RNA), and lipids. (Strictly speaking, lipids  

The inorganic precursors:
(18–64 daltons)
Carbon dioxide, Water, Ammonia,
Nitrogen(N2), Nitrate(NO3

–)

Carbon dioxide

Pyruvate

Alanine (an amino acid)

Protein

Metabolites:
(50–250 daltons)
Glucose, Fructose-1,6-
bisphosphate,
Glyceraldehyde-3-phosphate,
3-Phosphoglyceric acid,
Pyruvate, Citrate, Succinate

Building blocks:
(100–350 daltons)
Amino acids, Nucleotides,
Monosaccharides, Fatty acids,
Glycerol

Macromolecules:
(103–109 daltons)
Proteins, Nucleic acids,
Polysaccharides, Lipids

Supramolecular complexes:
(106–109 daltons)
Ribosomes, Cytoskeleton,
Multienzyme complexes

Organelles:
Nucleus, Mitochondria,
Chloroplasts, Endoplasmic
reticulum, Golgi apparatus,
Vacuole

The cell
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FIgure 1.8  Molecular organization in the cell is a hierarchy.
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 1.3 What Is the Structural Organization of Complex Biomolecules? 9

contain relatively few building blocks and are therefore not really polymeric like other 
macromolecules; however, lipids are important contributors to higher levels of com-
plexity.) Interactions among macromolecules lead to the next level of structural organi-
zation, supramolecular complexes. Here, various members of one or more of the classes 
of macromolecules come together to form specific assemblies that serve important sub-
cellular functions. Examples of these supramolecular assemblies are multifunctional 
enzyme complexes, ribosomes, chromosomes, and cytoskeletal elements. For example, 
a eukaryotic ribosome contains four different RNA molecules and at least 70 unique 
proteins. These supramolecular assemblies are an interesting contrast to their compo-
nents because their structural integrity is maintained by noncovalent forces, not by 
covalent bonds. These noncovalent forces include hydrogen bonds, ionic attractions, 
van der Waals forces, and hydrophobic interactions between macromolecules. Such 
forces maintain these supramolecular assemblies in a highly ordered functional state. 
Although noncovalent forces are weak (less than 40 kJ/mol), they are numerous in these 
assemblies and thus can collectively maintain the essential architecture of the supra-
molecular complex under conditions of temperature, pH, and ionic strength that are 
consistent with cell life.

1.3b Organelles represent a Higher Order in Biomolecular Organization
The next higher rung in the hierarchical ladder is occupied by the organelles, entities 
of considerable dimensions compared with the cell itself. Organelles are found only in 
eukaryotic cells, that is, the cells of “higher” organisms (eukaryotic cells are described 
in Section 1.5). Several kinds, such as mitochondria and chloroplasts, evolved from 
bacteria that gained entry to the cytoplasm of early eukaryotic cells. Organelles share 
two attributes: They are cellular inclusions, usually membrane bounded; and they are 
dedicated to important cellular tasks. Organelles include the nucleus, mitochondria, 
chloroplasts, endoplasmic reticulum, Golgi apparatus, and vacuoles, as well as other 
relatively small cellular inclusions, such as peroxisomes, lysosomes, and chromo-
plasts. The nucleus is the repository of genetic information as contained within the 
linear sequences of nucleotides in the DNA of chromosomes. Mitochondria are the 
“power plants” of cells by virtue of their ability to carry out the energy-releasing aero-
bic metabolism of carbohydrates and fatty acids, capturing the energy in metaboli-
cally useful forms such as ATP. Chloroplasts endow cells with the ability to carry out 
photosynthesis. They are the biological agents for harvesting light energy and trans-
forming it into metabolically useful chemical forms.

1.3c  Membranes Are Supramolecular Assemblies that Define  
the Boundaries of Cells

Membranes define the boundaries of cells and organelles. As such, they are not easily 
classified as supramolecular assemblies or organelles, although they share the proper-
ties of both. Membranes resemble supramolecular complexes in their construction 
because they are complexes of proteins and lipids maintained by noncovalent forces. 
Hydrophobic interactions are particularly important in maintaining membrane struc-
ture. Hydrophobic interactions arise because water molecules prefer to interact with 
each other rather than with nonpolar substances. The presence of nonpolar molecules 
lessens the range of opportunities for water–water interaction by forcing the water 
molecules into ordered arrays around the nonpolar groups. Such ordering can be min-
imized if the individual nonpolar molecules redistribute from a dispersed state in the 
water into an aggregated organic phase surrounded by water. The spontaneous as-
sembly of membranes in the aqueous environment, where life arose and exists, is the 
natural result of the hydrophobic (“water-fearing”) character of their lipids and pro-
teins. Hydrophobic interactions are the creative means of membrane formation and 
the driving force that presumably established the boundary of the first cell. The mem-
branes of organelles, such as nuclei, mitochondria, and chloroplasts, differ from one 
another, with each having a characteristic protein and lipid composition tailored to 
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